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ABSTRACT

An anti-noise problem on a finite time interval is solved by minimization of a qua-
dratic functional on the Hilbert space of square integrable controls. To this end, the one-
dimensional wave equation with point sources and pointwise reflecting boundary conditions
is decomposed into a system for the two propagating components of waves. Wellposedness of
this system is proved for a class of data that includes piecewise linear initial conditions and
piecewise constant forcing functions. It is shown that for such data the optimal piecewise
constant control is the solution of a sparse linear system. Methods for its computational
treatment are presented as well as examples of their applicability. The convergence of dis-
crete approximations to the general optimization problem is demonstrated by finite element
methods.
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1. INTRODUCTION

This article's optimization problem is motivated by a variant of active noise control in
acoustics. In physical terms, we consider a wave guide of finite length with the following
properties:

(i) the evolution of sound in the guide is appropriately described by plane waves prop-
agating along its axis without dissipation

(ii) the sound in the guide originates from initial conditions and sources with small
support located within the wave guide or at its front ends

(iii) the system's total behaviour results from superposition of mutually independent
sound waves that are generated by the sources and the initial conditions

(iv) at the front ends of the guide incident waves are partially absorbed and partially
reflected without alteration of shape.

The initial conditions at time t = 0 are given and the behaviour of some of the sources
(offending but uncontrollable sources) is known. Our control problem is to determine the be-
haviour of the other sources (controllable sources) such as to reduce the noise by destructive
interference in prespecified regions of the wave guide.

Most of the above assumptions are used in the literature on anti-noise problems in ducts
(e.g. [Sw], [TN], FW], see also [MI] p.467). Furthermore, in acoustics it is common practice
to consider harmonic sound fields with time dependences of the form exp(-iwt). In contrast
to this, the present paper works with non-harmonic sources and fields; for the time domain
model considered here, a convenient choice for the states and sources are elements in Hilbert
spaces of real-valued functions.

The basic time domain model in linear acoustics is the wave equation for the velocity
potential 0

(1.1.1) ,,t(t, x) - c2 0xx(t, x) = f(t,x) + u(t, x), 0 < t < T, 0 < x < L
(1.1.2) 0(0,x) = 00(), €,(0,X) = 0(W), 0 < x < L

with initial conditions 4o, to : (0, L) --- R, the constant c > 0 being the speed of sound. As
is customary in anti-vibration models (e.g. [Sw],[NCEB1],[NCEB2],[PI) we consider point
sources that are represented by 6 distributions

n m

(1.1.3) f(t,x) = Ef,(t),(x), u(tx) = Zu,(tSA(x), 0 < t < T,
i=2 i=2

at distinct points i, tji E (0, L) with time dependencies fi, ui E L 2(0, T).
According to (iv), the specific acoustic impedances of the boundary surfaces are real

constants Co, 6 _ 0. The interaction of a surface and the sound is such that the quotient
p/v,. of the sound pressure p i..nd the incident velocity vin at the surface is equal to pc(i
(M] p.259f, p denotes the equilibrium density within the duct). In terms of the velocity
potential, since p(t, x) = p¢i(t, x), v(t, x) = -0,(t, x), this leads to the boundary conditions

1.2) ,(t, 0) - cCO€ (t, 0) 0, >0.
1)(t, L) + c¢ 0,(t, L) = 0,



We include sources at the boundaries, assuming that sources and reflection combine by
superposition. For exanm the model's boundary at x = L could be an artificial, non-
reflecting one ((1 = 1) , idependent waves entering from x > L. Let us consider the
case of an offending soui, at x = L and a controllable source at x = 0,

Ot(t, 0) - C,(t, o) +-- ()
2c t> 0(1.1.4) 1~t0 co~t0 -I2

k,(t,L) + c(I0.(t,L) 2c f,(t),

fiui E L2 (O, T). The factors (1 + (j)/2c have the effect that the waves generated at the
boundaries and in the interior have equal amplitudes relative to fi(t), ui(t).

p(c 2 ko(t, x) 2 + Ot(t, x) 2 )/2c2 being the acoustic energy density at time t ([MI], (6.2.15)),
we define the performance index

T L m

(1.3) J(ul,. .. ) = J ~j q(tX)(C2.(tX)2 + +ttX)2 )dX + T3i(t)U,(t)2)dt

0 0

with design parameters ri(t) >_ 0, i = 1,...,7n. The weighting function q(t,x) >_ 0 is
non-zero on those subintervals of (0, L) where the acoustic energy is to be reduced.

The optimal control problem in terms of (1.1) is: Given initial conditions o, iko and
functions fi E L 2(0, T), i 1,... , n, find functions ui E L2(0, T), i = 1,.. . , m that minimize
the functional J wherein € is the solution to (1.1). Inserting the solution operators of the
system into the cost functional J gives a quadratic functional in (u1,... , Urn) whose unique
minimizer abstractly is represented by use of the adjoint of the operator that maps the control
functions to the waves they generate. The purpose of the present work is the construction
of approximate optimization problems that are amenable to numerical computations.

To this end, equation (1.1) is substituted by a first order system according to the fac-
torisation Ott - c20 .. = (O, - cO)(Ot + c0.). The components of that system are the two
components of the velocity potential 0 that are travelling in opposite directions. The delta
inhomogeneities, generally speaking, involve non-classical but wellknown concepts of solu-
tion (method of transposition, e.g. [LI). Yet, for the boundary conditions used in this article,
no directly quotable reference that wouid cover the wellposedness of the models in section 2
was found. Instead of following the general theory of [LM], for the one-dimensional systems
at hand, the existence, regularity and uniqueness of weak solutions (in a sense analoguous
to [L]) can be proved directly by application of classical methods (d'Alembert's formula,
Duhamel's principle, energy estimate) in the sense of distributions.

The regularity of the initial conditions and sources in section 2 is taylored precisely to the
discretized minimization problem of section 3. By restriction to sources that are piecewise
constant (in time) and to initial conditions that are first order splines (in space), the problem
can be formulated in terms of matrices. This is due to the fact that - according to the simple
process of propagation and reflection - the value of the cost functional is determined by the
two components of 0 at the points xi = jcAt at discrete times tk = kAt. Thus, for this type
of sources and initial conditions, the problem with finite time horizon (T < oo) is reduced
to the solution of a finite (possibly large) system of linear equations.
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The coefficient matrix of this system is sparse. We present numerical methods that avoid
the zero coefficients. To demonstrate their computational feasability and to illustrate some
characteristic details of the solutions, four examples are given.

Finally, twice differentiable initial conditions are interpolated by linear splines and square
integrable sources are projected onto subspaces of piecewise constant functions. It is shown
that the corresponding optimal controls converge to the solution of the original problem.
The proof rests on finite element methods for elliptic problems.

As is generally the case for wave equations (cf.[DLP],[DW]), the performance of the
controls is sensitive to time delays. This feature affects the open loop solution of the present
paper as well as the feedback solution as in [BKSWI. It should be noted that both approaches
lead to acausal controls in the sense that the behaviour of the offending sources at times later
than t is used to determine the optimal control action at time t. This is necessary because of
the global nature of the performance index and the unrestrictive choice oi admissible control
functions. In the examples we can observe the correlation of acausal actions with the finite
speed of propagation.

For typical boundary materials that are of practical interest, assumption (iv) is not valid
([BG],[BPS]). However, modelling and approximating the smearing of incident pulse waves
by the boundaries (see [MI] p.264f) would destroy the sparsity in the matrix of the discretized
system and thereby drastically increase the computational requirements.

On the other hand, we believe that explicitly computable solutions to minimization prob-
lems for pointwise reflecting boundaries as in (iv) provide detailed insights into the mecha-
nisms of the optimal control of waves in enclosures.

Notation. L 2 (a, b; X) is the Lebesgue space of square integrable functions on the in-
terval (a, b) with values in X. For real-valued functions, X = R, we simply write L 2(a, b).
C([a, b]; X) denotes the space of X-valued functions that are continuous on the closed in-
terval [a, b]. H'(a, b) is the Sobolev space of absolutely continuous functions h :(a, b) --+ R
with distributional derivative h' E L2 (a, b), normed by IhII, = (11h11 2 + 1Ih'112 )1/ 2 (11" j1 being
the L2-norm). As usual, Xk = {(X,,. ,xk)lxi E X,i = 1,... ,k}. In a Hilbert space X the
inner product will be denoted by (., .)x. We use the abbreviations h( +) and h(C-) for the
right and left hand limit of the function h at the point C E R. For an interval I C R we
write XI for the characteristic function of I, i.e. XI(t) = 1 for t E I, xI(t) = 0 for t E R \ I.

2. THE FIRST ORDER SYSTEM

Any unidirectional linear wave is the sum of two components propagating in positive and
negative direction. The insertion of the sum of a function of (t - x/c) and a functi n of
(t + x/c) into (1.2) shows, that the boundary conditions (1.2) couple the two corrpL:ents
by pointwise reflection with reflection coefficients

-1 =i <1, i=0,1.

( + 1
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Therefore we consider the system

O+(t, X) + coj.(t, X) = O,
(2.1) X0 < x<L, 0 < t<T;

q7(t,x) - co- (t,x) = 0,

(2.2) 0+(t,O) = Roq-(t,0), 0-(t,L) = R,€+(t,L), 0< t <T;

(2.3) 0+ (0,x) = 0+(x), -(0, x) = dO(x), 0 <x <L.

This first order system is a generalization of the homogeneous second order equation

(2.4) Ott(t,x) - c2 0xx(t,x) = 0, 0 < x < L, 0 < t < T

with initial and boundary conditions (1.1.2), (1.2) in the following sense: If 0+, 0- are
functions satisfying (2.1) - (2.3) with initial conditions

gX1 1

0(0) W qOO(X) - o 0() .x o
2 )]2 (c 20

0 0

then + = 0 -4- is a solution of (2.4), (1.1.2), (1.2) in the sense of distributions [S21; this

can be seen by the application of the commuting product (Ot + c,9)(a9 - cax) to 0+ + 0-,
and by verification of the initial and boundary conditions. Classical solutions that are twice
continuously differentiable evolve only if the initial conditions satisfy certain regularity and

compatibility requirements.
2.1. Wellposedness. In context of the present anti-noise problem it is adequate to work

with continuous initial data, because typical initial conditions are either silence, or sound
that has been generated by sources that are driven by L 2 (0, T) functions.. Accordingly, we

define the space of initial conditions

V = {(0+,0-) E H'(0,L)2 I¢+(0+) = Ro0-(0+), 0-(L- ) = 0+(L-)),

endowed with the H 1(0, L) 2-norm.

Definition 2.1. Given (0+, 0-) E V, a pair (0+, 0- ) of functions 0+, -: [0, T] x (0, L) --

R is called a solution of system (2.1) - (2.3) if

(i) 0+(0,x) = 0(x), 4-(0,x) = 0o(x), 0 < x < L;
(ii) the mapping [0,TI -] V, defined by t i (4+(t,.), ¢-(t,.)), is in C([0, TI; V);
(iii) for all x E (0, L), the functions [0, T] R defined by t 0 4+(t, x), t i-* 0-(t, x) are

absolutely continuous on [0, T];
(iv) for all t E (0,T), (2.1) holds for almost all x E (0,L).

Theorem 2.1. Given (+,€o) E V, system (2.1) - (2.3) has a unique solution. With

f(t) = max{e E Nje < ct/L} the solution is given by

for f(t) = t odd:

+t, x) = Ro(RR o )W-'O€(-(f - 1)L - x + ct) + (RoR,)L - 0+((t + 1)L + x - ct),
1+I

4(t, X) = R, (RoR) -2 00((f + 1)L - x - ct) + (R1 Ro) 2 0 0 (-(e + 1)L + x + ct);
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for e(t) = even:

+(t, x) = (RoR,)1 0+(fL + x - ct) + o(RRo)40(-tL- x +ct),

q-(t,x) = (RiRo)4qSo(-fL + x + ct) + Ri(RoR,)'10+ ((t + 2)L - x -ct).

These formulae are understood according to the convention +(r) = 00(r) = 0 if r E
R \ (0, L), so that, for every (t, x) E [0, T] x (0, L), at most one of the two terms in each
formula is non-zero. At the points x = -fL + ct and x = (t + 1)L - ct, where the values of
0+ and 0- are left open by this convention, these values are determined as the left or right
hand limits, which coincide due to the boundary ronditions in V.

Proof. As to uniqueness, the classical form of an energy estimate (eg.[S2] p. 2 99 ) is not
applicable here, because the initial conditions and solutions in Def. 2.1 are not continuously
differentiable. However, for any solution (0+, 0-) of (2.1) - (2.3) consider the function

L

E(t) = (0+(t,x)2 + tX)2 )dx.

0

Because of (ii), (iii), E can be viewed as a distribution whose derivative is given by

E'(t) = J(0+(i,x)2 + ¢-(t,x) 2 )tdx

0

(see [Z], 2.8). Transforming the integrand using (iv) and integrating (0+(1, x) 2 + -(t, x) 2 ).
from 0 to L we get, ¢+(t, .)2, 0-(t, .)2 being absolutely continuous (eg. [HS], (18.16)),

E'(t) = c[O+(t, 0+) 2 - 0+ (t, L-) 2 + 0-(t, L-) 2 - 0-(t,0+)2 ]

= c[(R - 1)q-(t,0+)2 + (Ri - 1)0-(t, L-) <0.

This shows that the derivative of E is a non-positive function; therefore ([S1],Chap.IV) E(t)
is a decreasing function. Thus, given (0+, 0g) E V, the difference of two solutions of (2.1)-
(2.2) is a solution with zero initial conditions i.e. E(0) = 0. Consequently, for the difference
of two solutions, E(t) = 0, t E [0, T]. This implies the uniqueness of the solution.

The formulae for 0+(t, x), -(t, x) describe the movement of the two components due to
propagation and reflection for the (t + 1)th cycle of complete reversion during fL/c < t <
(t+ 1)L/c (cf. section 2.2). In light of the convention stated above, it is quite straightforward
to verify that the given pair (0+, 0-) satisfies (i) - (iv) of Definition 2.1. 0

With
H := L 2 (0,T;L 2(0,L)2 )

we have the following immediate consequence of the formulae in Theorem 1.1.
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Corollary 2.1. The operator S : V --, H that maps any initial condition in V to the spatial
derivatives of the corresponding solution of (2.1) - (2.3), S( + , 0o)(t) =

where +, - are given in Theorem 2.1, is a bounded linear operator.

With regard to sources at the boundaries we consider the homogeneous first order system
(2.1) with zero initial conditions

(2.5) +(0, x)=O-(0,x)=0, 0<x<L

and inhomogeneous boundary conditions

(2.6) 0+(t,0+ ) = Ro-(t,O+), 0-(t,L-) = R +(t,L - ) + F(t)

where F is related to the boundary source f for the wave equation (2.4)

t(t, 0) - cO(t,0) = 0,
(2.7) 4t(t,L) + cC1 4.(t,L) + --2--(-- tf>t 0

2c

by

t

(2.8) F(t) - J fdr.

0

For a source at the left boundary (2.6), (2.7) are to be replaced accordingly. The first order
system with a point source at E (0, L) is

0+ (t, x) + co+(t, x) = c~)f
(2.9) t 0 <x <L, 0< t < T

Ct(t, x) - co- (t, x) = cF(t)64,

where, as in (2.8), 2cF is the primitive of the point source f in the wave equation

(2.10) Ott(t,x) - c2 0x."(t,x) = f(t),, 0< x <L, 0< t <T.

The application of (at - cO,)(Og + cO,) to 0 + 0-, where 0+, 0- satisfy (2.9), (2.2), (2.5)
or (2.1), (2.6), (2.5) shows that these systems are generalizations of (2.10), (1.2) or (2.4),
(2.7) respectively, with zero initial conditions 00 = 0 = 0 in (1.1.2).

For E (0, L) we denote by V1 the space

V = {(0+,0-) E H1 ((O,L) \ {})2 10+(0 + ) = R0¢-(0+), 0-(L- ) = 0-(L-))

endowed with the H 1 norm on (0,L) \ { }.
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Definition 2.2. Given E (O,L) and f E L2(O,T), a pair (4+,d-) of ft.nctions +
[0,T] x (0,L) -- R with 0+(0,x) = ¢-(0,x) = 0, 0 < x < L, is called a solution
a) of system (2.1), (2.6), (2.5) if

(i) the mapping [0, T] -- H'(0, L)2, defined by t -4 (0+ (t,.),q-(t,.)), is in C([0, T];
H1 (0, L)2 ),

(ii) for all x E (0, L), the functions [0, T] -4 R defined by t --* 0+(t, x), t -+ 0-(t, x) are
absolutely continuous on [0, T],

(iii) for all t E (0, T), (2.6) holds,
(iv) for all t E (0,T), (2.1) holds for almost all x E (0,L);

b) of system (2.9), (2.2), (2.5) if

(i) the mapping [0, TI V, defined by t - (4+(t,.), q-(t,.)), is in C([O, T]; V),
(ii) for all x E (0, L) \ {}, the functions [0, T] - R defined by t -4 0+(t, x), t -* 0-(t, x)

are absolutely continuous on [0, TI,
(iii) for all t E (0, T), 0+(t+) - 0+(t, -) = (t, - (t,+) =F(t),

(iv) for all t E (0,T), (2.1) holds for almost all x E (0, L) \ { }.

Theorem 2.2. Let f E L 2(O,T), C E (0,L).
a) The system (2.1), (2.6), (2.5) has the unique solution

+(t, x) = Z Ro(RIR°)kF (2k + 1)L - x + t X[L - ct, L](-2kL- x),

C=O C

btX) = Z(R, &)kF (k+1L+x+ t) X[L - ct, L](-2kL + x).
k=O

b) The unique solution of (2.9), (2.2), (2.5) is given by

00

Sx) =E(Ro R, )k F -2k L - x' + t) x, + ct](2kL + x)

+ Z (RR0)kF (- - 2kL - x +tx[ - ct,. ](-2.kL - )k=O

00 It e Lr - x.

+(t,x) = Z-(RRo)kF - - "kL+ ' + t) x[ - ct, (-2UkL + x)

=c
00

+ ER(RoR,)k-F c - +t) X[ +ct(2kL-x).

Proof. The formulae are constructed by folding tha solution of the problem on all of R (no
boundaries) into the domain (0, L) with reflection coefficients R, RI. Note that for any
t > 0 all the sums are finite, because for large enough k E N all characteristic functions are
evaluated outside their support. Thus, the solution-properties of the given pairs (0+, q)
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can be verified by considering the sums term by term. F being absolutely continuous,
the regularity with respect to x and t follows from the fact that F is zero wherever the
characteristic functions have time dependent steps. That the norm of (¢+(t,.), -(t,-))
varies continuously with t is due to the steady propagation with finite speed c (cf. section 2.2).
As to uniqueness, the difference of two solutions of one of the inhomogeneous problems
(extended continuously at in case b)) is a solution of the homogeneous problem (2.1),
(2.2), (2.5) and thus equals zero by Theorem 2.1. 0

For E (0, L) let St denote the operator that maps any inhomogeneity f E L2(0, T) to
the restriction to (0, L) \ { } of the spatial derivatives of the solution of (2.9), (2.2), (2.5),
i.e.

Stf~t) = (O+(t, -), 0-(t, .)) E L 2((0, L) \ {C})2,

where +, - are given in Theorem 2.2 b). The point is spared out to exclude 6-terms in the
derivatives of 0+(t, .), 0-(t, .), whereas the velocity potential 0+0t .) + 0-(t, .) is continuous
at C. Throughout we can choose Stf(t)( ) = (0,0) as a possible extension to (0, L). For
notational convenience we let j = L, Y1 = 0 and denote by So and SL the operators that map
boundary sources f E L2(0, T) to the spatial derivatives (0+(t,-), ¢(t,.)) of the solution of
(2.1), (2.6), (2.5), where (for the right hand boundary) 0+, 0- are given in Theorem 2.2 a).
An immediate consequence of Theorem 2.2 is

Corollary 2.2. For any C E [0, L], S4 L2 (0, T) --+ H is a bounded linear operator.

2.2. Propagation and reflection. The components of the solutions given in section 2.1
evolve by shifts with speed c in positive and negative direction combined with inversion and
reduction by R0 , R1 at the boundaries. The source f in (2.10) generates a wave that is
symmetric about E (0, L). More specifically, let the derivatives of the two components
of the velocity potential (0+(t,-),0- (t,.)) := Stf(t) be given at some time t > 0 and let

0 < r < rf = min( , L - )/c. Then, at time t + r
1

V+ (t + 7,X) = -cf + t + 7r) XIC 6 + cr](x)

I +(t, x - cr), cr < x < L

) -RoV(t, cr- x), 0 < x < cr(2.11)

-(t + r,x)- =2c2 f c /

S -(t,x + cr), 0< x < L-cr
+ -R,0+(t,2L - x - cr), L - c7 < x < L.

This is to be understood almost everywhere in (0, L) \ . For a boundary source at =

0( = L) the first term in 0-(t + 7,x) (0+(t + r,x)) is to be deleted with r0  T L = LIc.

For the pair (V+ (t,.),V-(t,.)):= S(O+,€o)(t), (2.11) applies for 0 < -r < L/c with f = 0.
All this can be checked by differentiating and regrouping the formulae of section 2.1 and
strict adherence to the convention at Theorem 2.1.

2.3. The minimization problem. For superposition of solutions to initial conditions
0+, 0- and multiple offending sources fI,..., f,, at the points E,..-, ,, E (0, L] define g E H

8



by
n

g(t) 5(0, ¢o)(t) + Sfi(t).
i=1

For the controllable sources located at 171,... , 7?m E [0, L) we write

U -- (u11,...,'um) E U := L 2(0, T) m

and denote by B the bounded linear operator U --+ H

Bu(t) = '_, ,U(t).
i= I

In this notation the spatial derivative of the solution of the first order system that corre-
sponds to (1.1) is g + Bu. Rewriting the functional (1.3), note that for solutions (g+, -)
of (2.1)

c2(0 + + q-),(t,x)2 + (0+ + O-)(t, X)2 = 2c2[q+(t, X)2 + 0-(t,x)1',

for all t E (0, T) and almost all x E (0, L). Therefore, we are considering the following
minimization problem: Given (0+, 0) E V and f, ... ,f, E L 2(O, T), determine fi E U
such that

(2.12) J(fl) = minTJ(u) : u e U},

where

(2.13) J(u) = (g + Bu, Q(g + Bu))H + (u, Ru)u.

Here Q and R are bounded selfadjoint operators on H and U resp., defined by

Q(4+, q-)(t, x) = p(q+(t, x)o+(t, x), q- (t, x)0- (t, x))

R(uj,..., ,m)(t) = (ri(t)ui(t),... ,rm(t)um(t)).

The two components of the waves may be weighted separately, but the functionals in (1.3)
and (2.13) coincide if q+ =- q- M q. We make the assumption that the weights q+, q- E
L'(0, T; L'(0, L)) and ri E L (O, T) are such that

(2.14) R + B*QB > 0,

where B* : H -- U is the adjoint operator of B. Then the unique minimizer of the quadratic
functional J is given by (eg. [B], (5.2.4))

f = -(R + B*QB)-B*Qg,

9



3. DISCRETIZATION

In order to obtain a discrete version of the minimization problem, we consider a grid of

character-stics of (2.1) in the (t, x)-plane with knots at the points (tk, xi), where x i  jAx,

j O,...,N and tk = kAt, k = O,...,K. We assume L = NAx, T = KAt and Ax = cAt.
Purthernore all sources should be located at meshpoints, i.e. C..., ,, 7 1,..., /,,} C
{xO,. ..

3.1. Piecewise constant sources and spline initial conditions. Define the finite-
dimensional spaces

UK = {f [0, T] - R I f is constant on [tk-.,tk),k 1,...,

VN- {(=+,-)E V V , are first order splines with respect to Xj}=0,

HN ={(H +,1b)CHI[k+,rF are constant on [xj-i,x1 ),j N=1,...,N}.

A first order spline with respect to {xj}No is a continuous function [0, LI -- R that is a

polynomial of degree one on [xi 1 , xj], j = 1,... , N. Being subspaces of L 2 (0, T) and H, UK

and HN are endowed with the corresponding L 2-products. For the kth basis element in UK

we choose x[tk-1,tk), k = 1,...,K and we use the pairs (X[xi-1, x), 0) and (0, X[x-1-,Xj))
for the jth and (j + N)th basis elements in HN,j 1, ... , N.

Lemma 3.1. /f(€+,€0 ) E VN and fi E UK, i =1,...,n then g(tk) E HNk 0,...,K.

fui C Ui=1,...m, then Bu(tk) E HN, k = O,...,K.

Proof. Because of Ax = cAt, the statements of the lemma follow from (2.11). 0l

For initial conditions (0+, ) E VN and sources fi E UK the coordinate vector g of

the (K + 1)-tupel (g(to),... ,g(tg)) E H K +1 has 2N(K + 1) real entries. The coordinate
vector u of u = (ui,...,U) C U is in RinK. The operator that maps any u E UP to

(Bu(to),... , Bu(tK)) has a 2N(K + 1) x mK matrix representation B. With this notation,

the time-sampled spatial derivative of the solution to the first order system that corresponds

to (1.1) is represented by the vector g + Bu.

3.2. Discrete minimization. We replace the minimization problem (2.12) by the

following one: given (0+, qSo) E VN and fl,..., fn E UK, determine I E U" such that

(3.1) J(fl) = min{J(u) : u E UK'},

where J(u) again is defined by (2.13).
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With the numbers

th xj-c(t-- ) th x jpk J= J f(t, x)dxdt, q+ =p] J q+(t, x) dxdt,

tk

Pkj= P ritxdxttq Pq(tdxt. t

ri,k =fr~~t

th-t

we define the 2N x 2N matrices
Qo = diag(qpI ..q + - ± N p)

, ",q,NPl,1,'-,PI,N)

k, = diag(p+,1 + q+~," ,P+,v+++,,-l, ql"",'+,N + q,N),

k K ,.,- 1,

QK = diag(p ,... ,PKN, qK,1,"". ,qK,N)"

and the square matrices

Q= diag(Qo,..., QK),

R = diag(rl,1 ,..., rl,K, , , ... rm,K).

of size 2N(K + 1) resp. inK.
A minimization problem written in terms of these matrices is: determine __ G R'' such

that

(3.2) J(i) = min{J(u) : u E RmK},

where
J(u) = (g + B__)TQ(g + Bu) + uTRu.

We assume R + BTQB > 0.

Theorem 3.1. The coordinate vector fi of the solution fi of (3.1) is the solution of (3.2).

Proof. Let u E Um and u = col(t 1 ,1 ,... ,U1,K,... unI,. . . , iUm,K) be its coordinate vector.

Then
m K th

(u,Ru)U = Z Z ri(t)u2,dt =uTRu.
i=1 k=l tA-I

Given spline initial conditions and piecewise constant sources, let h(t) = (h+(t,.), h-(t,.)) =

(g + Bu)(t) and denote the coordinate vector of (h(to),... , h(tK)) E H K+ l by h = col(h+ 1 ,

11



h+ , h ,,••,h+, ,.. +
hoNh-I )h-N,... •hN, h-,. • • ,h-,N). The movement of the two com-

ponents of h(t) over (xi-1, xi) during tk-l < t < tk is indicated in Fig. 3.1.

• j -C(t -tk-1 ) Xj_1 + C(t -tk-1 )

k-i~j

Fig. 3.1: Piecewise constant components at time t E (tk-,tk).

We see that

ti XjJ(q+(t,x)h+(t, x) + q- (t, x)h- (t, X)2 )dxdt
th-I zj-I

+ h+2 + h.+2  + p-h-2 --iL-2
Pk,. ~kLj + ,j k-Ij kj"k-Ij -qk,jgk,

for all k = 1,...,K and j=1,...,N. Using this, we get

K N tk Mi

k = 1 j= _ t h- I j - I

N N
-- +j h+ 2 + -j -2 + - p, h +2 + -, -2

11~ o~j +P,j hoj +  ., Kj Kj + K hK~j

j=1 j=I

K-1 N K N
' k' V jp+.h+2 qh2. + 'Y" + h+ 2  - -2
k,k" kkj k,j k-lj

k=I j=1 k=2 j=1

=h T Qh.

Therefore, J(u) = 0(). El

Thus, the vector representation -i of the solution to (3.1) solves the linear system

(3.3) (-B + _ = -B T Qg.
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4. NUMERICS

Without reference to the particular structure of system (3.3), its solution is a standard
task. However, since the discretizations in time and space are coupled, At = Ax/c, the size
of system (3.3) is large if high spatial resolution is required and/or if T is large. Then the
number of entries in the full matrix B is beyond the memory capacity of standard hardware.
To overcome this problem, we present efficient algorithms for the computation of the right
hand side of (3.3) and the nonzero entries of the sparse matrix BTQB.

The vector g can be produced by discrete simulation of the propagation and reflection of
the components 0+ , 0S-. g(1 : 2N) is given by the initial conditions. Instead of shifting the
arrays that hold 0+, 0, at each time step, it is more efficient, in particular when only a few
of the time steps have to be assigned (Example 4.3), to keep the arrays, except of replacing
the entry for 0+(0+) by -R 0 times the previous entry for 0,;(0+) and the entry for 0-(L-)
by -R 1 times the previous entry for 0+(L-). To accomplish this, an integer variable for the
current index of 0+(0+) is initialized to 1, decreased by 1 at each time step, or reset to N if
it is 1. The same boundary index is applicable for both components, if the array for 0S- is
arranged in reversed order. To keep track of the indices where to add the contributions of
the offending sources fi, we have to initialize and update integers that point to the source
locations i, i = 1,... , n. The assignment of the entries of 0+, 0- to g(2kN + 1 : 2(k + 1)N)
gives the kth group of g, k = 1,..., K. For the subsequent multiplication with BT is it
convenient to store the 0- groups in reversed order. Q being a diagonal matrix, Q g is
obtained from g by 2N(K + 1) multiplications.

For the computation of -BTQ g, consider the structure of BT. Using 2c2 as unit for
the source amplitudes fi(t), ui(t), we omit the factors 21 in (2.11). Then the kth basis
elements of UK produces, at time tk, a q" pulse X[xj-l, xj) to the left and a 0+ pulse
-x[Xj, xj+I) to the right of the source location (boundary sources produce only one such
pulse). These pulses travel one space index per time step and are reflected at the boundaries.
Thus, the kth row of a source block in BT starts with k 2N-groups of zeros and continues
with K - (k - 1) 2N-groups each containing (at most) two nonzero propagating entries.
Initializing these entries to :F1 according to the source location, and updating their indices
and amplitudes according to propagation and reflection, the kth entry of the ith source in
-BTQg is accumulated by adding the products of the pulse amplitudes with those entries
of -Q g that are determined by the updated indices. Repeating the entire procedure for
I = 1,.._.,R,-BTQ g is computed avoiding the zeros in BT (which is a mK x 2N(K + 1)
matrix with at most mK x 2K) nonzeros).

Next, we describe an algorithm to compute BTQB for time independent weights q:L-(t, x)
- Z=,q5'x[xj_,,xj). Then Q = diag( QlQl,...,Q1r Qj) with Q1 = diag(q,- pAtAX ,= ,j 2 2 ,

... +, q, q ,... , q) E R2N . The algorithm is based on the fact that two waves emerging
from two "ources contribute to an entry in B TB only if the pulses that are generated by
the basis elements of UK overlap during their travel forth and back in the duct. Two pulses
overlap starting with the generation of the later one, or never. Therefore BTB consists of
K x K blocks that are banded, each nonzero diagonal containing the accumulation of the
products of two overlapping travelling pulses.
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An entry in a diagonal can be computed from the one south east to it by adding the
contribution that occurs because both sources are active one cycle earlier. For doing this,
it is convenient to imagine the overlapping pulses traelling backward in time, adding con-
tributions to what has happened later. At each time step, the product of the overlapping
pulses has to be multiplied by q] or qj , according to the current direction of propagation
and the current location of the overlapping pulses (by half the value of qt or q.7 for the last
time step). For the four lower diagonals near (resp. on) the main diagonal of the block,
the location of the entry in the most southern row is determined by the distance of the two
sources of the block and their distances to the boundaries; the product of the overlapping
pulses is 1, R 0 , R 1 , RoR 1 respectively. These four diagonals are filled up one after the
other: The elements to the north west of the most southern entry are computed until the
overlapping pulses arrive at the boundary. From then on the diagonal entries are computed
in groups of N elements corresponding to the propagation back and forth in the duct. At
the beginning of each group the product of the pulses is multiplied by the square of the
appropriate reflection coefficient. The diagonal is complete when the most western column
of the block is reached.

Each time a nonzero entry to one of these four diagonals is determined, the entries within
the block in the same row and 2jN columns to the west of it are computed by multiplication
with (RoR 1 )i. These represent the interaction of a source that was active at the same
location but j full periods (= j2N cycles) earlier than the one just considered - its pulse
was reflected 2j times before overlapping with the later pulse.

Analogously, the diagonals above the main diagonal of the block are built up from south
east to north west with the full periods north of the current entry.

These methods, coded in Fortran 90 (NAGWare compiler 1.2), create disk files that
contain the right hand side and the nonzeros of the lower triangle of the coefficient matrix
in (3.3). The latter one consists of lines of the form row index, column index, value of
the entry. The files are loaded into Matlab 4.1 where the coefficient matrix is set up as a
sparse symmetric matrix A and the right hand side is a full vector rhs. The solution ft is
then obtained by the Matlab command u = A \ rhs that invokes sparse matrix arithmetics
[M]. The generation of the optimal waves is again done in Fortran 90, analogously to the
generation of g. Finally, we use Matlab for the graphics.

In the following examples, t is given in seconds, x in meters, c = 344. The relation of
the diagonal elements of Q, denoted by q±(x), to the weights q±(t, x) is given above. We
use time independent functions for ri(t), so that the entries of R are ri = ri(t)At. The step
functions fi(t), ui(t) are measured in units of 2c2 . Then J(u) = J(u) = hTQA + iTR u.

Example 4.1. L = 10, Ro = 1, R1 = 0.5, N = 40, K = 137,n = 1,61 = 4, m = 1,r7 =
0, r = 0, q+(x) - 1, zero initial conditions. This introductory example is comparable to
the problems in [CNE]. The offending source fl = X[t 1 9 , t 20 ) emits a positive and a negative
pulse at time t 20 = 20Ax/c , 0.0145. To reduce the rightgoing pulse of the offending
wave, the optimal control source acausaly emits a pulse wave at time t 4 : ill(t) = -0.68 for
t E [t3 ,t 4 ) . To annihilate the pulse that comes from rh in negative direction, fl(t) = -1
for t E [t35 , t 36 ); to annihilate the reduced pulse that is reflected at the right boundary,
1 (t) = -0.16 for t E [t83 ,t 84 ). After that 0 is constant, silence. The 3D graphics show the
velocity potential at the grid points (tk, Xj) connected by straight lines that are parallel to
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the axes. In the plane of the t, x axes a contour plot indicates curves of constant 0(t, x).
Compared to the uncontrolled process J(0) = 116.1. 2, the optimal acoustic (r, = 0) energy
is J(ft) = 26.88.

Example 4.2. The configuration is as in the previous example, except that the control
source now is located in the interior, 711 = 2. The optimal control thus generates leftgoing

pulses so that the annihilation of €) is never completed. J( L) = 56.95.

Example 4.3. L = 10, R0 = R = 0.2, N = 25, K --- 148,n = 1, 1 = 10,m = 2,771 =
3.2, rI = 0.5, 72 = 7.2, r 2 = 0.5, q+(x) = X[0, 3 .2 ). The offending source at the right bound-
ary runs at 50 Hz, f1 (t) = sin l00irtk for t E [tk-,tk). As harmonic initial conditions we
take 0+, 0-" from the last time step of the (uncontrolled) generation of g that starts form
pre-initial conditions 0+(-10,.) -(-10,.) 0 with f, running for -10 < t < 0. The
optimal control causes a transient (t > 0) toward another periodic state with a flat velocity
potential on (t1 8 , tK) x (0, 3.2). Note that, because of r2 0 0, u 2 switches to 0 as soon as its
signals cannot influence the waves in (0,3.2) any more. We get J(0) = 659.46, J(fi) = 20.65.
The flatness of 0 in (0, 3.2) can be influenced by the r::agnitudes of rl, r2 relative to q±. For
our choice of rl, r2 we see some variation of 4 throughout. For smaller design parameters
rir2 the oscillations of € become invisible on (t 8 , tK) x (0,3.2). However, r2 = 0 would
yield a singular coefficient matrix since ql(x) = 0 on (3.2, 10).

Example 4.4. To test the applicability of our methods to somewhat more realistic acoustic
events, we sample the first 2 seconds of a wellknown theme of classical music, f1 (t) -

3k= X[ , 2k+ )sin3927rt + X[1,2)sin312irt, t E [0,2], and feed it to a source at j = 2.5
in a duct of length L = 5 with reflection coefficients R0 = 0, R1 = 0.7 and zero initial
conditions. We seek to reduce the sound near the boundaries: q+(x) = X(0 , 1) + X(4 , 5). Let
two control sources be located at ,1 = 1, 772 = 4 weighted by ri = r2 = 0. We would like to
have spatial resolution of about 30 grid points for the shortest wave length of the offending
wave, 344/196/30 = 0.059, so we choose Ax = 0.05, N = 100. Then T = 2 = KAt leads to
K = 2c/Ax = 13760.

The optimal control annihilates the components of the wave that cross 71, 72 in outgoing
direction. This amounts to total reflection at the boundaries of (271,72), which, roughly
speaking, in general leads to increasing sound in its interior where the offending source
is located. This is not the case for the symmetric configuration chosen here. We give
graphics for the transients at t = 2 and t = . At the end of the first tone, the graphics8 8.
show a transient toward a smoother velocity potential. At the end of the third tone, the
controls generate waves that are absorbed by the offending source, so that 4 = 0 (although
ri = r2 = 0 and q± = 0 .in (ij/ ,772)) until the fourth tone of lower frequency begins at t = 1
(the contour curves reveal computational inaccuracies). Because of the totally reflecting
behaviour of the control sources, there is no damping in [71, 772] and the process does not
converge to a periodic state as t -- 2. In fact, the choice of Ro, R , does not affect the optimal
control for this configuration; however, R0 = 0 drastically reduces the number of nonzeros
in (3.3). The full matrix B would require over 600 gigabytes of storage (8 bytes per entry),
whereas the sparse matrix A of density 0.0003 has 2.4 megabytes (including the memory for
the indices). The sparse arithmetics to solve Au = rhs require less than 10.3 megaflops.
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5. APPROXIMATION AND CONVERGENCE

We again assuire that L, T anid the location of the sources are such that there exist integers
N,K E N with { C,..,G,172,...,rm 19 {jL/N,j = 1,...,N- 1} and K =cTN/L.

For e E N and 0 E H 1(0, L) let st 0 be the first order spline interpolation of q with respect
to the mesh {jL/eN}4No, i.e.

stq(jL/fN) = 0(jL/N), j = O,...,tN.

There exists a co > 0 such that for all t E N and 0 E H 2(0, L)

(5.1) II st - kIIH'(o,L) 5 coll"ll/t

(e.g. [Sch], Th. 2.5). Moreover, let irl denote the orthogonal projection of L2(0, T) onto
UtK, i.e.

kT/ItK

7rKf(t) = i fdr for t E [(k - 1)T/eK, kT/eK), k = 1,... ,I K.

(k-i)T/ItK

For all f E L 2(O,T) (cf. [BB], p. 176)

(5.2) Ikerf - f1IL2(o,T) --+ 0 as t --+ 00.

Given fl,... ,f, E L 2(0,T) and sufficiently smooth 0+,€0, the solution fi of (2.12) is
approximated by the functions fit, that are the solutions of (3.1) wherein (ste+, sto) and
7rtf,... , ref,, are used for initial conditions and sources and the minimum is taken over
UtmK. More precisely we have
Theorem 5.1. If (0+,40) E V fH 2 (0,2) 2 orif(+,o) E VIoN for some 0 N then

II'a - ftilu --+ 0 as t -+00

+nProof. With gt = S(s0, ) + Sirlfi the optimal control fit E U." is characterized
i=1

by the variational equation

a(fit, u) = bt(u) for all u E Ul

where a : U x U --+ R, bt : U -+ R are symmetric bilinear, resp. linear, continuous forms

given by

a(u, v) = (u, (R + B*QB)u)u

bt(u) = -(B*Qgt, u)u.

This is so, because fit minimizes the functional Jr(u) = a(u, u) - 2bt(u) + (gt, Qge)H in UTA.

(cf. [C], Theorem 1.2; the constant term is included here for consistency with (2.13), but it
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does ,.: affect the minimization problem). Similarly, fi minimizes J(u) = a(u, u) - 2b(u) +
(g, Qg') 1 in U with

b(u) = -(B*Qg, u)u

and thus it is characterized by

a(fi, u) = b(u) for all u E U.

By assumption (2.14) a is U-elliptic and we can apply the first Strang lemma ([C], Th. 26.1):
there exist constants Cl, C2 that are independent of f, such that

jji - tlju _< cl inf{If - uju :u E UtK} + C2 sup{lb(u) - be(u)I/ljuju : u E UI.}

The first term on the right hand side tends to zero by (5.2). The second term is estimated
using Schwarz' inequality and the boundedness of B*Q

I(B*Q(g - gt),u)uj/l ll < IIB*QIIIlg - gtIIH

where

n

IIg - &IH _ ISI(4, €0-) - ( 0e4, V)lv + IISefIIIf - lrtfil1L2(o,T)

so that (5.1), (5.2) imply the result. In case (4, o) E Vt.N we have s4 4, =

for f > o. 0

The second case in Theorem 5.1 is applicable when the problem is broken up into pieces
over subintervals of [0, T]. But this is not equivalent to minimization over [0, T] at once.

How do the discrete controls fit perform when applied to the original data (+, 0o) E
V n H 2 (0, L) 2 and sources fi E L2 (0, T)? The answer (in the sense of convergence) is
contained in the theorem: J(fit) -+ J(fi), since J: U -- R is continuous.

5. CONCLUSIONS

By decomposition of the one-dimensional wave equation with point sources and pointwise
reflecting boundary conditions and by appropriate discretization in time and space, the
minimization problem with piecewise constant sources was reduced to the solution of a
sparse linear system. It was shown that the waves that are generated by discrete forcing
functions and initial conditions are sufficiently regular so that the problem is wellposed. Four
examples demonstrated the applicability of algorithms that efficiently set up the sparse linear
system; such examples provide insights into the optimal control of waves in ducts. Finally,
it was proved that the solutions of finite dimensional discretizations converge to the solution
of the minimization problem with square integrable sources.
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Example 4.4
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